روش هموتوپی طیفی برای حل مسایل مقدار مرزی درجه دوم غیر خطی

thesis
abstract

بسیاری از پدیده هادر جهان اطراف ما ذاتا غیرخطی بوده و قابل توصیف به وسیله معادلات غیرخطی می باشند.به دلیل ظهور کامپیوترهای پیشرفته،تولید وحل مسایل خطی آسان است.امادرحالت کلی جواب دقیق برای مسایل غیرخطی قدری مشکل خواهدبود.دراین پایان نامه ازروش هموتوپی طیفی،برای پیداکردن جواب های مساله مقدارمرزی غیرخطی مرتبه دوم استفاده می کنیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

روش شبه طیفی کسری خطی برای حل مسائل مقدار مرزی

در این پایان نامه، نوعی از روش شبه طیفی را برای حل مسائل مقدار مرزی بررسی می کنیم که در این روش عملگر دیفرانسیل با یک ماتریسی که از ماتریسهای مشتق گیری مقدماتی ساخته شده و عناصرش مشتقات چند جمله ای لاگرانژ در نقاط هم محلی می باشد، جایگزین می شود. حل تکراری سیستم معادلات بدست آمده مستلزم کاربرد متناوب و تکراری اتریس مشتق گیری است، ما برای بهبود جواب از پیشنهاد تال ازر و کاسلوف برای تغییر نقاط هم...

15 صفحه اول

روش اختلال هموتوپی برای حل مسائل مقدار مرزی مرتبه شش

در این پایاننامه روش تجزیه آدومیان، روش تکرار تغییراتی و روش اختلال هموتوپی را برای یافتن جواب تقریبی معادلات دیفرانسیل معمولی، معادلات دیفرانسیل جزئی و مسائل مقدار مرزی مرتبه شش بکار می بریم. از آنجاکه حل دسته وسیعی از مساءل ذکر شده در حالت کلی مشکا است و عموما جواب تحلیلی برای آنها موجود نمیباشد لذا در صدد یافتن روشهای تقریبی تحلیلی برای اینگونه معادلات هستیم که استفاده از روشهای مذکور یک جوا...

15 صفحه اول

حل مسایل مقدار مرزی منفرد غیر خطی با استفاده از روش تکرار تغییر پذیر

در این پایان نامه ابتدا به معرفی یکی از روش های نیمه-تحلیلی به نام روش تکرار تغییرپذیر می پردازیم و با ارائه ی مثال های متنوع، ویژگی های مهم و دلایل برتری این روش را بر سایر روش ها توضیح می دهیم. سپس از این روش برای حل معادلات منفرد غیرخطی امدن – فولر استفاده می کنیم و خواهیم دید که روش تکرار تغییرپذیر به خوبی می تواند بر مشکل منفرد بودن معادلات امدن- فولر در x=0 غلبه کرده و نتایج عددی با دقت ب...

15 صفحه اول

روش بی-اسپلاین درجه پنجم برای حل یک مسئله مقدار مرزی مرتبه دوم با شرایط مرزی ترکیبی

این پایان نامه در پنج فصل تنظیم شده است. در فصل اول تاریخچه کوتاهی از توابع اسپلاین بیان شده است. در فصل دوم وجود و یکتایی جواب معادله دیفرانسیل مرتبه ی دوم غیرخطی با شرایط مرزی اشاره شده است. فصل سوم در مورد تاریخچه کاربرد توابع بی-اسپلاین در حل معادلات دیفرانسیل است. در فصل چهارم روش بی-اسپلاین درجه پنجم برای حل مسئله مقدار مرزی مرتبه دوم بیان شده و نهایتا فصل پنجم شامل چند مثال عددی است.

برنامه ریزی درجه دوم محدب تعمیم یافته برای حل دستگاه های خطی فازی

دستگاه معادلات خطی، یکی از مهمترین ابزارهای مدلسازی پدیده های دنیای واقعی است. اما از آنجاییکه پدیده های دنیای واقعی همواره با عدم قطعیت همراه هستند، لذا حل دستگاه معادلات خطی فازی از اهمیت بسزایی برخوردار می‌شود. یکی از روش های متداول و پر کاربرد برای یافتن جواب‌های دقیق و تقریبی یک دستگاه معادلات خطی فازی، استفاده از روش کمترین مربعات است. در این روش، با انتخاب یک متر دلخواه و حل یک مساله برن...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023